(本题10分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE (2)平面PAC平面BDE
设单调递增函数的定义域为,且对任意的正实数x,y有:且. ⑴.一个各项均为正数的数列满足:其中为数列的前n项和,求数列的通项公式; ⑵.在⑴的条件下,是否存在正数M使下列不等式: 对一切成立?若存在,求出M的取值范围;若不存在,请说明理由.
已知函数f(x)=|log2(x+1)|,实数m、n在其定义域内,且m<n,f(m)=f(n). 求证:(1)m+n>0; (2)f(m2)<f(m+n)<f(n2).
某人乘坐出租车从A地到乙地,有两种方案:第一种方案,乘起步价为10元,每km价1.2元的出租车;第二种方案,乘起步价为8元,每km价1.4元的出租车,按出租车管理条例,在起步价内,不同型号的出租车行驶的里路是相等的,则此人从A地到B地选择哪一种方案比较适合?
设求证
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项和为Sn,且Sn=1-bn. (1)求数列{an}、{bn}的通项公式; (2)记cn=anbn,求证:cn+1≤cn.