如图,四棱锥中,底面为正方形,,平面,为棱的中点.(1)求证:平面平面; (2)求二面角的余弦值.(3)求点到平面的距离.
如图在平面直角坐标系中点均在单位圆上已知点在第一象限的横坐标是点在第二象限点(1)设求的值;(2)若为正三角形求点的坐标
已知函数f(x)=x(x+a)-lnx,其中a为常数.(1)当a=-1时,求f(x)的极值;(2)若f(x)是区间内的单调函数,求实数a的取值范围;(3)过坐标原点可以作几条直线与曲线y=f(x)相切?请说明理由.
已知A、B是椭圆上的两点,且,其中F为椭圆的右焦点.(1)当时,求直线AB的方程;(2)设点,求证:当实数变化时,恒为定值.
(本小题12分)设等差数列{an}的前n项和为Sn,已知S3=a6,S8=S5+21.(1)求Sn的表达式;(2)求证:.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60º,又PA⊥底面ABCD,E为BC的中点. (1)求证:AD⊥PE; (2)设F是PD的中点,求证:CF∥平面PAE.