如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(1)求证:平面;(2)求锐二面角的余弦值.
已知函数,其中是自然对数的底数,. (1)若,求曲线在点处的切线方程; (2)若,求的单调区间; (3)若,函数的图像与函数的图像有3个不同的交点,求实数的取值范围.
已知函数,( 为常数,为自然对数的底). (1)当时,求; (2)若在时取得极小值,试确定的取值范围; (3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线(为确定的常数)相切,并说明理由.
设函数. (1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.
为坐标原点,已知向量分别对应复数,且,,可以与任意实数比较大小,求的值.
已知函数在处取得极值,求函数以及的极大值和极小值.