某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假. (1)p:4∈{2,3},q:2∈{2,3}; (2)p:1是奇数,q:1是质数; (3)p:0∈,q:{x|x2-3x-5<0}R; (4)p:5≤5,q:27不是质数; (5)p:不等式x2+2x-8<0的解集是{x|-4<x<2}, q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.
已知两个命题r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果对x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围.
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假. (1)p:3是9的约数,q:3是18的约数; (2)p:菱形的对角线相等,q:菱形的对角线互相垂直; (3)p:方程x2+x-1=0的两实根符号相同, q:方程x2+x-1=0的两实根绝对值相等. (4)p:是有理数,q: 是无理数.
a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.
已知x,y∈R.求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.