某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
已知平面向量=(,1),=(),,,. (1)当时,求的取值范围; (2)设,是否存在实数,使得有最大值2,若存在,求出所有满足条件的值,若不存在,说明理由
已知函数的最小正周期为(1)求的值; (2)若不等式在上恒成立,求实数的取值范围
设函数()过点.(1)求函数在的值域;(2)令,画出函数在区间上的图象.
如图所示,四边形ABCD为矩形,点M是BC的中点,CN=CA,用向量法证明:(1)D、N、M三点共线;(2)若四边形ABCD为正方形,则DN=BN.
已知角的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P.(1)求的值; (2)若图象的对称中心为,求的值.