(本小题满分10分)已知两直线和直线,试确定的值,使(1)和相交于点;(2)且在y轴上的截距为.
已知函数(其中是自然对数的底数),,.(1)记函数,且,求的单调增区间;(2)若对任意,,均有成立,求实数的取值范围.
如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近 的一点,为圆周上靠近 的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.(1)求关于的函数解析式,并指出该函数的定义域;(2)求观光路线总长的最大值.
如图,在四棱锥中,底面是菱形,且.(1)求证:;(2)若平面与平面的交线为,求证:.
已知的内角的对边分别为,. (1)若,,求的值;(2)若,求的值.
(本小题12分)如图7,已知圆,设A为圆C与x轴负半轴的交点,过点A作圆C的弦AM,并使弦AM的中点恰好落在y轴上.(1)当在内变化时,求点M的轨迹E的方程;(2)已知定点P(-1,1)和Q(1,0),设直线PM、QM与轨迹E的另一个交点分别是M1、M2 . 求证:当M点在轨迹E上变动时,只要M1、M2都存在且M1M2,则直线M1M2恒过一个定点,并求出这个定点。