如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近 的一点,为圆周上靠近 的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.(1)求关于的函数解析式,并指出该函数的定义域;(2)求观光路线总长的最大值.
(本题满分12分)已知,周长为14,,求顶点的轨迹方程.
(本题满分12分)在等差数列{an}中,若a2+a3+a4+a5=34,且a2·a5=52.求数列{an}的通项公式an.
已知抛物线与直线交于A、B两点,O为坐标原点.(I)当k=1时,求线段AB的长;(II)当k在R内变化时,求线段AB中点C的轨迹方程;(III)设是该抛物线的准线.对于任意实数k,上是否存在点D,使得?如果存在,求出点D的坐标;如不存在,说明理由.
如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求点E到平面ACD的距离;(III)求二面角A—CD—B的余弦值。
已知a,b,c分别是△ABC的三个内角A、B、C的对边.(Ⅰ)若△ABC面积为求a,b的值;(Ⅱ)若acosA=bcosB,试判断△ABC的形状.