如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近 的一点,为圆周上靠近 的一点,且∥.现在准备从经过到建造一条观光路线,其中到是圆弧,到是线段.设,观光路线总长为.(1)求关于的函数解析式,并指出该函数的定义域;(2)求观光路线总长的最大值.
红队队员甲、乙与蓝队队员A、B进行围棋比赛,甲对A、乙对B各比一盘.已知甲胜A,乙胜B的概率分别为0.6、0.5.假设各盘比赛结果相互独立. (1)求红队至少一名队员获胜的概率; (2)用ξ表示红队队员获胜的总盘数,求ξ的分布列.
已知函数f(x)=在x=1处取得极值2. (1)求函数f(x)的表达式; (2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
设函数f(x)=x3﹣x2﹣2x﹣. (1)求函数f(x)的单调递增、递减区间; (2)当x∈[﹣1,1]时,f(x)<m恒成立,求实数m的取值范围.
我们已经学过了等差数列,你是否想到过有没有等和数列呢? (1)类比“等差数列”给出“等和数列”的定义; (2)探索等和数列{an}的奇数项与偶数项各有什么特点?并加以说明.
设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画. (1)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法? (2)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?