某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者,先从符合条件的志愿者中随机抽取100名按年龄分组:第1组第2组第3组第4组第5组得到的频率分布直方图如图所示,(1)分别求第3,4,5组的频率。(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3,4,5组各抽取多少名志愿者.(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆的方程; (Ⅱ)过点的直线与椭圆相切,直线与轴交于点,当为何值时的面积有最小值?并求出最小值.
已知函数·(其中>o),且函数的最小正周期为 (I)求f(x)的最大值及相应x的取值 (Ⅱ)将函数y= f(x)的图象向左平移单位长度,再将所得图象各点的横坐标缩小为原来的倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.
如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面. (Ⅰ)证明:平面; (Ⅱ)若,,求二面角的正切值.
某高校在2013年考试成绩中100名学生的笔试成绩的频率分布直方图如图所示, (1)分别求第3,4,5组的频率; (2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试, ① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙不同时进入第二轮面试的概率; ② 若第三组被抽中的学生实力相当,在第二轮面试中获得优秀的概率均为,设第三组中被抽中的学生有名获得优秀,求的分布列和数学期望。
已知椭圆C:的离心率为,且经过点. (Ⅰ)求椭圆C的标准方程; (Ⅱ)设斜率为1的直线l与椭圆C相交于,两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且.求△ABM的面积.