已知函数的图象在点(1,)处的切线方程为。(1)用表示出;(2)若在[1,+∞)上恒成立,求的取值范围.
设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0); (2)求ξ的分布列,并求其数学期望E(ξ).
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点. (1)求异面直线A1B与C1D所成角的余弦值; (2)求平面ADC1与平面ABA1所成二面角的正弦值.
如图,在三棱锥中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点. 求证:(1)平面EFG∥平面ABC; (2)BC⊥SA.
如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上. (1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程; (2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数. (1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围; (2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.