已知定义在上的函数,其中为大于零的常数.(Ⅰ)当时,令,求证:当时,(为自然对数的底数);(Ⅱ)若函数,在处取得最大值,求的取值范围.
(本小题共12分)如图,一张平行四边形的硬纸片中,,。沿它的对角线把△折起,使点到达平面外点的位置。(Ⅰ)证明:平面平面;(Ⅱ)如果△为等腰三角形,求二面角的大小。
(本小题共12分)已知数列的前n项和,其中是首项为1,公差为2的等差数列,(1)求数列的通项公式;(2)若,求数列的前n项和
(本小题共12分)直四棱柱中,底面是边长为的正方形,侧棱长为4。(1)求证:平面平面;(2)求点到平面的距离d;(3)求三棱锥的体积V。
(本小题共12分)如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点,求异面直线OC与MN所成角的余弦值。
已知数列是首项为1,公差为2的等差数列,是首项为1,公比为3的等比数列,(1)求数列、的通项公式 ; (2)求数列的前n项和。