(本小题满分12分)如图,已知正方形在直线的上方,边在直线上,是线段上一点,以为边在直线的上方作正方形,其中,记,的面积为.(1)求与之间的函数关系;(2)当角取何值时最大?并求的最大值.
(本小题满分12分)如图,在底面是直角梯形的四棱锥P—ABCD中,,平面ABCD,PA=AB=BC=3,梯形上底AD=1。(1)求证:平面PAB;(2)求面PCD与面PAB所成锐二面角的正切值;(3)在PC上是否存在一点E,使得DE//平面PAB?若存在,请找出;若不存在,说明理由。
(本小题满分12分)已知(1)求的最小正周期和单调递增区间;(2)若的图象关于直线对称,且,求的值。
若函数,(1)当时,求函数的单调增区间;(2)函数是否存在极值.
设,其中为正实数(1)当时,求的极值点;(2)若 为R上的单调函数,求的取值范围.
已知抛物线的焦点F和椭圆的右焦点重合。(1)求抛物线C的方程,并求其准线方程;(2)设P(1,2),是否存在平行于OP(O为坐标原点)的直线,使得直线与抛物线C有公共点,且直线OP与的距离等于?若存在,求出直线的方程;若不存在,说明理由。