将数列中的所有项按每一行比上一行多两项的规则排成如下数表:已知表中的第一列数构成一个等差数列, 记为, 且, 表中每一行正中间一个数构成数列, 其前n项和为.(1)求数列的通项公式;(2)若上表中, 从第二行起, 每一行中的数按从左到右的顺序均构成等比数列, 公比为同一个正数, 且.①求;②记, 若集合M的元素个数为3, 求实数的取值范围.
某商家推出一款简单电子游戏,弹射一次可以将三个相同的小球随机弹到一个正六边形的顶点与中心共七个点中的三个位置上(如图),用S表示这三个球为顶点的三角形的面积.规定:当三球共线时,S=0;当S最大时,中一等奖,当S最小时,中二等奖,其余情况不中奖,一次游戏只能弹射一次.(1)求甲一次游戏中能中奖的概率; (2)设这个正六边形的面积是6,求一次游戏中随机变量S的分布列及期望值.
已知ABC中,角A,B,C的对边分别为a,b,c, 若向量与向量共线.(1)求角C的大小;(2)若,求a,b的值.
已知为函数图象上一点,O为坐标原点,记直线的斜率.(Ⅰ)若函数在区间上存在极值,求实数m的取值范围;(Ⅱ)设,若对任意恒有,求实数的取值范围.
在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),试判断直线与圆的位置关系,并证明你的结论.
如图,在底面为平行四边形的四棱柱中,底面,,,.(Ⅰ)求证:平面平面;(Ⅱ)若,求四棱锥的体积.