..(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.已知椭圆上有一个顶点到两个焦点之间的距离分别为,。(1)求椭圆的方程;(2)如果直线与椭圆相交于,若,证明直线与直线的交点必在一条确定的双曲线上;(3)过点作直线(与轴不垂直)与椭圆交于两点,与轴交于点,若,,证明:为定值。
一条双曲线的左、右顶点分别为,点是双曲线上不同的两个动点。 (1)求直线与交点的轨迹的方程式; (2)设直线与曲线相交于不同的两点,已知点的坐标为,若点在线段的垂直平分线上,且.求的值.
(本小题满分8分)在直三棱柱中,,,分别为棱、的中点,为棱上的点。 (1)证明:; (2) 当时,求二面角的大小。
(本小题满分8分)某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C. 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
(本小题满分8分)已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,求实数的取值范围.
已知函数的定义域为, (1)求; (2)当时,求函数的最小值。