如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.(1)求证:AC⊥DE;(2)已知二面角APBD的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.
(本小题满分13分)已知,(Ⅰ)若,求的值;(Ⅱ)若,求中含项的系数;(Ⅲ)证明:
(本小题满分13分)如图:平行四边形的周长为8,点的坐标分别为.(Ⅰ)求点所在的曲线方程;(Ⅱ)过点的直线与(Ⅰ)中曲线交于点,与y轴交于点,且//,求证:为定值.
(本小题满分13分)已知函数.(Ⅰ)求函数在点处的切线方程;(Ⅱ)求函数的单调区间和极值.
(本小题满分14分)某商场进行促销活动,到商场购物消费满100元就可转动转盘(转盘为十二等分的圆盘)一次进行抽奖,满200元转两次,以此类推(奖金累加);转盘的指针落在A区域中一等奖,奖10元,落在B、C区域中二等奖,奖5元,落在其它区域则不中奖.一位顾客一次购物消费268元,(Ⅰ)求该顾客中一等奖的概率;(Ⅱ)记为该顾客所得的奖金数,求其分布列;(Ⅲ)求数学期望(精确到0.01).
(本小题满分14分)已知四棱锥的底面为菱形,且,,与相交于点.(Ⅰ)求证:底面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若是上的一点,且,求的值.