从名男生和名女生中任选人参加演讲比赛,①求所选人都是男生的概率;②求所选人恰有名女生的概率;③求所选人中至少有名女生的概率.
有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”。已知b和c是先后抛掷该枚骰子得到的数字,函数=。 (Ⅰ)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数有零点的概率; (Ⅱ) 求函数在区间(—3,+∞)是增函数的概率
在边长为2的正方体中,E是BC的中点,F是的中点 (Ⅰ)求证:CF∥平面 (Ⅱ)求二面角的平面角的余弦值。
在中, (Ⅰ)求AB的值。 (Ⅱ)求的面积。
(, (本小题满分10分)选修4—5:不等式选讲 已知(a是常数,a∈R) ①当a=1时求不等式的解集。 ②如果函数恰有两个不同的零点,求a的取值范围。
((本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xoy中,已知曲线C的参数方程是(是参数),现以原点O为极点,x轴正半轴为极轴建立极坐标系, ⑴写出曲线C的极坐标方程。 ⑵如果曲线E的极坐标方程是,曲线C、E相交于A、B两点,求.