为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:
(1)在这次调查中一共抽查了 名学生;(2)表中x,y的值分别为:x= ,y= ;(3)在扇形统计图中,C部分所对应的扇形的圆心角是 度;(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.
(本题6分)已知关于x的方程x2-(k+1)x+k2+1=0 (1)k取什么值时,方程有两个实数根; (2)如果方程有两个实数根x1、x2,=x2,求k的值.
(本题5分)已知a、b为方程x2-2x-1=0的两根,不解方程,求a2+2b2-2a-4b+3的值.
根据条件求下列抛物线的解析式: (1)二次函数的图象经过(0,1),(2,1)和(3,4); (2)抛物线的顶点坐标是(-2,1),且经过点(1,-2).
解方程(本题8分) (1) (2)
如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴子点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3。 (1)设点P的纵坐标为p,写出p随k变化的函数关系式。 (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP。请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由。