已知曲线C1:,(α为参数),C2:,(θ为参数)(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为α=,Q为C2上的动点,求PQ中点M到直线C3:,(t为参数)距离的最小值及此时Q点坐标.
(本小题满分12分) 已知函数是奇函数, (1)求的值 (2)证明:在上为增函数; (3)当时,求函数的值域.
(本小题10分) 已知集合,,若,求实数a的取值范围.
(满分14分)已知定义在正实数集上的函数,,其中. 设两曲线,有公共点,且在该点处的切线相同. (1)用表示; (2)试证明不等式:().
(满分12分)如图,在直线之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往. 家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读. 每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d, 0)处的学校.已知船速为,车速为(水流速度忽略不计).若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间.
(满分12分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点. (1)求证:AB1⊥平面A1BD; (2)求二面角A-A1D-B的余弦值; (3)求点C1到平面A1BD的距离.