如图所示的长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求证:D1O⊥平面AB1C;(3)求二面角B﹣AB1﹣C的大小.
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。 (1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费; (2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
已知命题p:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解。若命题p是真命题,命题q为假命题,求实数a的取值范围。
已知tan(α+)=-3,α∈(0,). (1)求tanα的值; (2)求sin(2α-)的值.
已知圆与抛物线相交于,两点 (Ⅰ)求圆的半径,抛物线的焦点坐标及准线方程; (Ⅱ)设是抛物线上不同于的点,且在圆外部,的延长线交圆于点,直线与轴交于点,点在直线上,且四边形为等腰梯形,求点的坐标.
已知函数. (I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程; (II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.