如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为,且离心率等于,过点的直线与椭圆相交于不同两点,点在线段上。(1)求椭圆的标准方程;(2)设,若直线与轴不重合,试求的取值范围。
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克。 (1)求的值; (2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
已知命题方程上有解;命题只有一个实数满足不等式若命题是假命题,求的取值范围.
设曲线在点处的切线与轴的定点的横坐标为,令. (1)当时,求曲线在点处的切线方程; (2)求的值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半 轴长为半径的圆与直线相切. (1)求椭圆的标准方程; (2)若直线与椭圆相交于两点,且,判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
已知函数有两个极值点,且. (1)求实数的取值范围,并讨论的单调性; (2)证明: