设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.(1)求实数a,b的值;(2)求函数f(x)的极值.
已知的第五项的二项式系数与第三项的二项式系数的比是, (1)求n; (2)求展开式中常数项.
修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元. (1)求的表达式; (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
已知 (1)判断的奇偶性; (2)讨论的单调性; (3)当时,恒成立,求b的取值范围.
设z是虚数,是实数,且. (1)求的值及z的实部的取值范围. (2)设,求的最小值.
已知集合,,若,求实数的取值范围.