已知等差数列的前n项和为,且(1)求数列的通项公式;(2)设,求数列的前n项和Tn.
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率. (1)求椭圆的方程; (2)设为坐标原点,点、分别在椭圆和上,,求直线的方程.
在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:,C2:. 设点P的轨迹为. (1)求C的方程; (2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?
如图;已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N. (1)求椭圆C的方程; (2)求的最小值,并求此时圆T的方程; (3)设点P是椭圆C 上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点。求证:为定值.
已知抛物线. (1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标; (2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率; (3)若过点且相互垂直的两条直线,抛物线与交于点与交于点. 证明:无论如何取直线,都有为一常数.
如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、、三点互不重合. (1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.