已知圆过点,,并且直线平分圆的面积.(1)求圆的方程;(2)若过点,且斜率为的直线与圆有两个不同的公共点.①求实数的取值范围; ②若,求的值.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为。(1)求椭圆C的方程;(2)设直线L与椭圆C交于A、B两点,坐标原点O到L的距离的,求△AOB面积的最大值。
已知正方体中,E,F分别是,CD的中点(1)证明:(2)证明:平面AED⊥(3)设,求三棱锥的体积。
已知过点A(0,1)且斜率为的直线与圆C:相交于M、N两点。(1)求实数的取值范围(2)求证:为定值(3)若O为坐标原点,且,求K值。
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点。求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD。
已知圆C:,直线。(1)当为何值时,直线与圆C相切;(2)当直线与圆C相交于A、B两点,且AB=时,求直线的方程。