已知数列的通项公式为,其中是常数,且.(1)数列是否一定是等差数列?如果是,其首项与公差是什么?并证明,如果不是说明理由.(2)设数列的前项和为,且,,试确定的公式.
(本小题共14分)如图,在四棱锥中,底面是正方形,平面, 是中点,为线段上一点. (Ⅰ)求证:; (Ⅱ)试确定点在线段上的位置,使//平面,并说明理由.
(本小题共13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且, . (Ⅰ)求与; (Ⅱ)数列满足,求的前项和.
(本小题共13分)已知△中,角,,的对边分别为,,,且,. (Ⅰ)若,求; (Ⅱ)若,求.
(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足. (Ⅰ)判断函数是否是集合中的元素,并说明理由; (Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根; (Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,.
(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在直线交椭圆于,两点, 且使点为△的垂心(垂心:三角形三边高线的交点)?若存在,求出直线的方程;若不存在,请说明理由.