(本小题满分12分)已知向量,向量(其中为正常数).(Ⅰ)若,求时的值;(Ⅱ)设,若函数的图像的相邻两个对称中心的距离为,求在区间上的最小值.
如图,在三棱柱中,平面,.以,为邻边作平行 四边形,连接和. (1)求证:平面; (2)求证:平面.
已知函数. (1)求的最小正周期; (2)求在区间上的最大值和最小值.
在数列中,若(,,为常数),则称为数列. (1)若数列是数列,,,写出所有满足条件的数列的前项; (2)证明:一个等比数列为数列的充要条件是公比为或; (3)若数列满足,,,设数列的前项和为.是否存在 正整数,使不等式对一切都成立?若存在,求出的值; 若不存在,说明理由.
已知椭圆:的右焦点为,短轴的一个端点到的距离等于焦距. (1)求椭圆的方程; (2)过点的直线与椭圆交于不同的两点,,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
已知函数,其导函数的图象经过点,,如图所示. (1)求的极大值点; (2)求的值; (3)若,求在区间上的最小值.