已知椭圆C:的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点M(0,1),与椭圆C交于不同的两点A ,B.(1)求椭圆C的标准方程;(2)当椭圆C的右焦点F在以AB为直径的圆内时,求的取值范围.
当为何实数时,复数Z= 是 (1)实数;(2)虚数;(3)纯虚数;(4)对应点在轴上方。
设≥>0,求证:≥
(1) 已知曲线C:(t为参数), C:(为参数)。化C,C的方程为普通方程,并说明它们分别表示什么曲线; (2)求两个圆ρ=4cosθ0, ρ=4sinθ的圆心之间的距离,并判定两圆的位置关系。
已知函数 (1)如,求的单调区间; (2)若在单调增加,在单调减少, 证明: o.
已知函数. (1)若函数的图象过原点,且在原点处的切线斜率是,求的值; (2)若函数在区间上不单调,求的取值范围.