设函数有两个极值点,且.(1)求的取值范围,并讨论的单调性;(2)证明:.
已知函数.(1)当a = 4,解不等式;(2)若函数是奇函数,求a的值;(3)若不等式在上恒成立,求实数a的取值范围.
(本小题满分13分)已知数列满足:,(I)求得值;(II) 设求证:数列是等比数列,并求出其通项公式;(III) 对任意的,在数列中是否存在连续的项构成等差数列?若存在,写出这项,并证明这项构成等差数列;若不存在,说明理由。
(本小题满分13分)已知椭圆C的对称中心为原点O,焦点在轴上,离心率为,且点在该椭圆上。(I)求椭圆C的方程;(II)过椭圆C的左焦点的直线与椭圆C相交于A,B两点,若的面积为,求圆心在原点O且与直线相切的圆的方程。
(本小题满分14分)已知函数与函数。(I)若,的图像在点处有公共的切线,求实数的值;(II)设,求函数的值。
(本小题满分14分)如图:在四棱锥中,底面ABCD是菱形,,平面ABCD,点M,N分别为BC,PA的中点,且(I)证明:平面AMN;(II)求三棱锥N的体积;(III)在线段PD上是否存在一点E,使得平面ACE;若存在,求出PE的长,若不存在,说明理由。