如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.(1)求这两个班学生成绩的中位数及x的值;(2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作交于点,连接 (Ⅰ)证明:; (Ⅱ)求异面直线与所成角的余弦值及二面角的余弦值.
设条件:实数满足;条件:实数满足且命题“若,则”的逆否命题为真命题,求实数的取值范围.
已知幂函数的图象经过点. (1)求函数的解析式,并画出图象; (2)证明:函数在上是减函数.
求证:.
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,当每辆车的月租金定为x元时,租赁公司的月收益为y元. (1)试写出x,y的函数关系式(不要求写出定义域); (2)租赁公司某月租出了88辆车,求租赁公司的月收益多少元?