(本小题满分14分)已知函数f(x)=x-1-lnx(1)求曲线在点处的切线方程;(2)求函数的极值;(3)对恒成立,求实数的取值范围.
已知f(x)=x2+c,且f[f(x)]=f(x2+1)(1)设g(x)=f[f(x)],求g(x)的解析式;(2)设φ(x)=g(x)-λf(x),试问:是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,且在(-1,0)内是增函数.
设关于x的方程2x2-ax-2=0的两根为α、β(α<β),函数f(x)=. (1)求f(α)·f(β)的值; (2)证明f(x)是[α,β]上的增函数; (3)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小?
设x=1与x=2是函数f(x)=alnx+bx2+x的两个极值点. (1)试确定常数a和b的值;(2)试判断x=1,x=2是函数f(x)的极大值还是极小值,并说明理由.
在甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1. (1)试求常数a、b、c的值;(2)试判断x=±1是函数的极小值还是极大值,并说明理由.