在2014年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为,且每题正确回答与否互不影响.(1)分别写出甲、乙两考生正确回答题数的分布列,并计算其数学期望;(2)试用统计知识分析比较两考生的通过能力.
(本小题满分12分)数列中, (1)求的通项公式;(2)设,求
(本小题满分10分) 已知若,且的图象相邻的对称轴间的距离等于 (1)求的值;(2)在中,分别是角A,B,C的对边,,且,求的最小值。
如图所示,平面ABC,CE//PA,PA=2CE=2。 (1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分) 若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得: ①若方程有两相异实根,则数列通项可以写成,(其中是待定常数); ②若方程有两相同实根,则数列通项可以写成,(其中是待定常数); 再利用可求得,进而求得. 根据上述结论求下列问题: (1)当,()时,求数列的通项公式; (2)当,()时,求数列的通项公式; (3)当,()时,记,若能被数整除,求所有满足条件的正整数的取值集合.
(本题满分16分,第(1)小题8分,第(2)小题8分) 己知双曲线的中心在原点,右顶点为(1,0),点、Q在双曲线的右支上,点(,0)到直线的距离为1. (1)若直线的斜率为且有,求实数的取值范围; (2)当时,的内心恰好是点,求此双曲线的方程.