(本题满分14分,其中第1小题6分,第2小题8分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
现有甲、乙两个靶。某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分。该射手每次射击的结果相互独立。假设该射手完成以上三次射击。(Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.
数列中,,用数学归纳法证明:。
在一次购物抽奖活动中,假设某10张奖券中有一等奖卷1张,可获价值50元的奖品;有二等奖卷3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从这10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列和数学期望。
已知函数.(Ⅰ)若为定义域上的单调增函数,求实数的取值范围;(Ⅱ)当时,求函数的最大值;(Ⅲ)当时,且,证明:.
已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.(1)求曲线C的方程(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.