(本题满分14分,其中第1小题6分,第2小题8分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知展开式中的二项式系数的和比展开式的二项式系数的和大,求展开式中的系数最大的项和系数最小的项.
现有9本不同的书,分别求下列情况的不同分法的种数。 (1)分成三组,一组4本,一组3本,一组2本; (2)分给三人,一人4本,一人3本,一人2本; (3)平均分成三组。
设函数f(x)=×,其中向量="(2cosx,1)," =(cosx,sin2x+m). (1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间; (2)当xÎ[0]时,ô f(x)ô <4恒成立,求实数m的取值范围.
已知向量=(sinA,cosA),=,,且A为锐角. (1)求角A的大小; (2)求函数f(x)=cos2x+4cosAsinx,(xÎR) 最大值及取最大值时x的集合.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图. (1)根据茎叶图判断哪个班的平均身高较高; (2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.