.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)如图,已知椭圆,,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(1)求椭圆和双曲线的标准方程;(2)设直线、的斜率分别为、,证明;(3)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
(本小题满分14分)如图,在正三棱柱ABC-A1B1C1中,D、E分别为CC1、A1B1的中点. 求证:C1E∥平面A1BD; (2)求证:平面ABB1A1⊥平面A1BD.
(本小题满分14分) 在△ABC中,a,b,c分别为内角A,B,C的对边,且 (1)求A的大小; (2)现给出三个条件:①;②a=2;③.请从中选择两个条件,使得确定的△ABC的面积最大.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数. (1)用xn表示xn+1; (2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式; (3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点. (1)求椭圆的方程; (2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.
已知函数在区间上为单调增函数,求的取值范围.