设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业。分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100)。而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元。(1)若要保证第二产业的产值不减少,求x的取值范围;(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?
已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2. (I)求椭圆的方程; (II)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点。试判断的大小是否为定值,并说明理由.
如图,已知长方形中,,为的中点. 将沿折起,使得平面平面. (I)求证:; (II)若点是线段的中点,求二面角的余弦值.
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
(1)已知甲厂生产的产品共84件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品, ①用上述样本数据估计乙厂生产的优等品的数量; ②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.
已知点A(4,0)、B(0,4)、C() (1)若,且,求的大小; (2),求的值.
已知,R (Ⅰ)当时,解不等式; (Ⅱ)若恒成立,求k的取值范围.