已知二次函数.(1)若,试判断函数零点个数;(2)是否存在,使同时满足以下条件①对任意,且;②对任意,都有。若存在,求出的值,若不存在,请说明理由。(3)若对任意且,,试证明存在,使成立。
(本小题满分12分)某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设 (Ⅰ)求他们选择的项目所属工程类别相同的概率; (Ⅱ)记为3人中选择的项目属于B类工程或C类工程的人数,求的分布列及数学期望.
(本小题满分12分)已知函数>0,>0,<的图象与轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为和 (1)写出的解析式及的值;(2)若锐角满足,求的值.
(本小题满分14分) 无穷数列的前n项和,并且≠. (1)求p的值; (2)求的通项公式; (3)作函数,如果,证明:.
(本小题满分13分) 已知圆的圆心为,一动圆与这两圆都外切。 (1)求动圆圆心的轨迹方程; (2)若过点的直线与(1)中所求轨迹有两个交点、,求的取值范围.
(本小题满分12分) 已知函数 (1)讨论当a > 0时,函数的单调性; (2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有 公共点,求实数a的取值范围.