已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x. (Ⅰ)求函数g(x)的解析式; (Ⅱ)若h(x)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围.
(本小题满分12分)如图,抛物线上有一点,,过点引抛物线的切线分别交轴与直线于两点,直线交轴于点. (1)求切线的方程; (2)求图中阴影部分的面积,并求为何值时,有最小值?
(本小题满分12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.,陈老师采用两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率直方图(如下图).记成绩不低于90分者为“成绩优秀”. (I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的人数为,求的分布列和数学期望; (II)根据频率分布直方图填写下面列联表,并判断是否有的把握认为:“成绩优秀”与教学方式有关.
(本小题满分12分)在我校值周活动中,甲、乙等五名值周生被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名值周生. (1)求甲、乙两人同时参加A岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)设随机变量X为这五名值周生中参加A岗位服务的人数,求X的分布列及期望.
(本小题满分12分)函数数列满足:, (1)求; (2)猜想的表达式,并证明你的结论.
(本小题满分10分)已知 (1)解不等式 (2)若不等式有解,求实数的取值范围。