设 圆与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为.(1)用表示和(2)若数列满足 (1)求常数的值,使得数列成等比数列;(2)比较与的大小.
(本小题满分14分)已知函数f(x)=x-1-lnx(1)求曲线在点处的切线方程;(2)求函数的极值;(3)对恒成立,求实数的取值范围.
(本小题满分12分)已知等差数列的前n项和为 ,公差d≠0,且 成等比数列.(1)求数列的通项公式;(2)设 ,求数列{}的前n项和.
(本小题满分12分)如图,已知PA⊥⊙O所在的平面, AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC=PA,E是PC的中点,F是PB的中点.(1)求证:EF//平面ABC;(2)求证:EF⊥平面PAC;(3)求三棱锥B—PAC的体积.
(本小题满分12分)已知圆C的圆心在直线y=2x上,且与直线l:x+y+1=0相切于点P(-1,0).(Ⅰ)求圆C的方程;(Ⅱ)若A(1,0),点B是圆C上的动点,求线段AB中点M的轨迹方程,并说明表示什么曲线.
(本小题满分10分)从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155cm和195cm之间,将测量结果分成八组得到的频率分布直方图如下:(1)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;(2)在样本中,若学校决定身高在185cm以上的学生中随机抽取2名学生接受某军校考官进行 面试,求:身高在190cm以上的学生中至少有一名学生接受面试的概率.