(本小题满分10分)从某校高三年级800名学生中随机抽取50名测量身高.据测量,被抽取的学生的身高全部介于155cm和195cm之间,将测量结果分成八组得到的频率分布直方图如下:(1)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少;(2)在样本中,若学校决定身高在185cm以上的学生中随机抽取2名学生接受某军校考官进行 面试,求:身高在190cm以上的学生中至少有一名学生接受面试的概率.
已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. 如图,已知直线,平面,且,,,都在外.求证:.
根据下列对几何体结构特征的描述,说出几何体的名称. 一个直角梯形绕较长的底边所在的直线旋转一周形成的曲面所围成的几何体.
考古学中常利用死亡的生物体中碳14元素稳定持续衰变的现象测定遗址的年代.假定碳14 每年的衰变率不变,已知它的半衰期为5730年,那么: (1)碳14的衰变率为多少? (2)某动物标本中碳14的含量为正常大气中碳14的含量的(即衰变了),该动物大约在距今多少年前死亡?
在数列中,设. (1)如果是以为公差的等差数列,求证也是等差数列,并求其公差; (2)如果是以为公比的等比数列,求证也是等比数列,并求其公比.
已知是各项均为正数的等比数列,是等比数列吗?为什么?