在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是_ ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).
如图, A , B 是 ⊙ O 上两点,且 AB = OA ,连接 OB 并延长到点 C ,使 BC = OB ,连接 AC .
(1)求证: AC 是 ⊙ O 的切线;
(2)点 D , E 分别是 AC , OA 的中点, DE 所在直线交 ⊙ O 于点 F , G , OA = 4 ,求 GF 的长.
如图,在平行四边形 ABCD 中, E 为对角线 BD 上一点,且满足 ∠ ECD = ∠ ACB , AC 的延长线与 △ ABD 的外接圆交于点 F ,证明: ∠ DFE = ∠ AFB .
如图, AB 为 ⊙ O 的直径,点 C 为 ⊙ O 上异于 A , B 的一动点,弦 AD = 5 3 , ∠ ACD = 60 ∘ , CA , CB 是关于 x 的一元二次方程 x 2 - mx + n = 0 的两根,求 m 的最大值.
如图, H 为 △ ABC 的垂心, ⊙ O 为 △ ABC 的外接圆.点 E , F 为以 C 为圆心, CH 长为半径的圆与 ⊙ O 的交点, D 为线段 EF 的垂直平分线与 ⊙ O 的交点.
求证:(1) AC 垂直平分线段 HE ;
(2) DE = AB .
如图,已知在 △ ABC 中, AB > AC , ∠ BAC = 45 ∘ , E 是 ∠ BAC 的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB ,已知 AF = 1 , BF = 5 ,求 △ ABC 的面积.