如图, AB 为 ⊙ O 的直径,点 C 为 ⊙ O 上异于 A , B 的一动点,弦 AD = 5 3 , ∠ ACD = 60 ∘ , CA , CB 是关于 x 的一元二次方程 x 2 - mx + n = 0 的两根,求 m 的最大值.
(本题8分)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m到点C,测得仰角为60°,已知小敏同学身高(AB)为1.6m,求这棵树的高度(DF)。(结果精确到0.1m,≈1.73).
(本题8分)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.
如图(1),抛物线与x轴交于A、B两点,与y轴交于点C(0,).[图(2)为解答备用图](1)__________,点A的坐标为___________,点B的坐标为__________;(2)设抛物线的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(此小问为了解问,可不做)(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);③若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.
某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?(2)若要使商场平均每天的盈利最多,请你为商场设计降价方案.