已知函数.(为常数)(1)当时,①求的单调增区间;②试比较与的大小;(2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
在面积为1的中,,,以MN所在直线为x轴,MN中点为原点建系,求出以M,N为焦点且过P点的椭圆方程.
设椭圆的中心是坐标原点,焦点在x轴上,离心率,已知到这个椭圆上的点的最远距离为,求这个椭圆方程,并求椭圆上到点P距离为的点Q坐标.
如图,AB是过椭圆左焦点F的一条弦,C是椭圆的右焦点,已知,,求椭圆方程.
设,是椭圆的两个焦点,P为椭圆上一点.已知P, ,是一个直角三角形的三个顶点且,求的值.
设椭圆,F是它的左焦点,Q是右准线与x轴的交点,点满足向量与PQ数量积为0,N是直线PQ与椭圆的一个公共点,当时,求椭圆的方程.