设椭圆的中心是坐标原点,焦点在x轴上,离心率,已知到这个椭圆上的点的最远距离为,求这个椭圆方程,并求椭圆上到点P距离为的点Q坐标.
(本小题满分12分)已知双曲线与椭圆有共同的焦点,点在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)以为中点作双曲线的一条弦,求弦所在直线的方程.
(本小题满分10分)已知圆C:,直线(Ⅰ)判断直线与圆的位置关系。(Ⅱ)若直线与圆交于不同两点,且=,求直线的方程。
(本小题12分)已知函数,函数的最小值为.(Ⅰ)求;(Ⅱ)是否存在实数,,同时满足以下条件:①;②当的定义域为时,值域为.若存在,求出,的值;若不存在,说明理由.
(本小题12分)已知函数的定义域是R,对任意实数x,y,均有,且当时,.(Ⅰ)证明:在R上是增函数;(Ⅱ)判断的奇偶性,并证明;(Ⅲ)若,求不等式的解集.
(本小题12分)已知函数,.(Ⅰ)求函数g(x)的值域;(Ⅱ)解方程:.