设椭圆,F是它的左焦点,Q是右准线与x轴的交点,点满足向量与PQ数量积为0,N是直线PQ与椭圆的一个公共点,当时,求椭圆的方程.
某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了 两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为 B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工 3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设 此人对A和B两种饮料没有鉴别能力. (1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△,使平面⊥平面BCDE,F为线段的中点. (Ⅰ)求证:EF∥平面; (Ⅱ)求直线与平面所成角的正切值.
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA. (1)求证:平面EFG⊥平面PDC; (2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
如图所示,直棱柱中,底面是直角梯形,,. (1)求证:平面; (2)在A1B1上是否存一点,使得与平面平行?证明你的结论.
如图,平面⊥平面,为正方形, ,且分别是线段的中点. (Ⅰ)求证://平面; (Ⅱ)求异面直线与所成角的余弦值.