某停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该停车场临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲临时停车付费恰为6元的概率;(2)若每人停车的时间在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
已知函数,. (Ⅰ)求的最小正周期; (Ⅱ)求在闭区间上的最大值和最小值.
已知函数(为常数)的图象与轴交于点,曲线在点处的切线斜率为. (Ⅰ)求的值及函数的极值; (Ⅱ)证明:当时,; (Ⅲ)证明:对任意给定的正数,总存在,使得当,恒有.
已知等差数列的公差为,前项和为,且,,成等比数列。 (Ⅰ)求数列的通项公式; (Ⅱ)令=求数列的前项和。
如图,在四棱锥中,底面,, ,,,点为棱的中点. (Ⅰ)证明:; (Ⅱ)若为棱上一点,满足,求二面角的余弦值.
已知为定义在上的奇函数,当时,函数解析式为. (Ⅰ)求的值,并求出在上的解析式; (Ⅱ)求在上的最值.