如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos<>的值;(3)求证: A1B⊥C1M.
已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为;③圆心到直线:的距离为的圆的方程。
求过直线与已知圆的交点,且在两坐标轴上的四个截距之和为8的圆的方程。
已知,且,求的值。
直线kx-y+6=0被圆x2+y2=25截得的弦长为8,求k的值.
已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.