已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.
已知函数,其中a为常数,且 (1)若是奇函数,求a的取值集合A; (2)当a=-1时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B。 (3)对于问题(1)(2)中的A、B,当时,不等式恒成立,求x的取值范围。
数列满足,. (1)求通项公式; (2)令,数列前项和为, 求证:当时,; (3)证明:.
已知数列中,,对于任意的,有 (1)求数列的通项公式; (2)若数列满足:求数列的通项公式; (3)设,是否存在实数,当时,恒成立,若存在,求实数的取值范围,若不存在,请说明理由.
已知各项均为正数的数列满足,, . (Ⅰ)求证:数列是等比数列; (Ⅱ)当取何值时,取最大值,并求出最大值; (Ⅲ)若对任意恒成立,求实数的取值范围.
1已知函数,且,. (Ⅰ)求的值域 (Ⅱ)指出函数的单调性(不需证明),并求解关于实数的不等式; (Ⅲ)定义在上的函数满足,且当时求方程在区间上的解的个数.