写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.
.已知的展开式中,前三项的系数的绝对值依次成等差数列,(1)证明:展开式中没有常数项;(2)求展开式中所有有理项.
((本小题满分12分)已知曲线C: (t为参数), C:(为参数)。(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值。
((本小题满分12分)已知函数处取得极值,并且它的图象与直线在点(1,0)处相切,(1)求的解析式; (2)求的单调区间.
( (本题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
(1)请根据上表提供的数据,求出y关于x的线性回归方程(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)(参考公式:回归直线的方程是,其中,,)
(为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法调查该地区老人情况:男老年人需要提供帮助40人,不需要提供帮助160人;女老年人需要提供帮助30人,不需要提供帮助270人.(Ⅰ)根据调查数据制作2×2列联表;(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?