如图,四棱锥的高为,底面是边长为的正方形,顶点在底面上的射影是正方形的中心.是棱的中点.试求直线与平面所成角的正弦值.
已知函数,且. (1)判断的奇偶性并说明理由; (2)判断在区间上的单调性,并证明你的结论; (3)若在区间上,不等式恒成立,试确定实数的取值范围.
湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数. (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域); (2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.
已知函数 (1)求函数的定义域和值域; (2)若有最小值-2,求的值.
(1)计算: (2)已知,求的值.
已知函数 (1)写出函数的单调区间; (2)若在恒成立,求实数的取值范围; (3)若函数在上值域是,求实数的取值范围.