设命题:函数在区间上单调递减;命题:函数的最小值不大于0.如果命题为真命题,为假命题,求实数的取值范围.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。
设且.(I)当时,求实数的取值范围;(II)当时,求的最小值.
已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .(Ⅰ) 试讨论函数f (x )的单调性;(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
在等比数列中,,公比,且,又是与的等比中项。设.(Ⅰ) 求数列的通项公式;(Ⅱ) 已知数列的前项和为,,求.
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取 ( 无放回 ) 3个球,记随机变量X为取出3球所得分数之和.(Ⅰ) 求X的分布列;(Ⅱ) 求X的数学期望E(X).