如图,椭圆:,、、、为椭圆的顶点.(1)若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆方程;(2)已知:直线相交于,两点(不是椭圆的左右顶点),并满足.试研究:直线是否过定点? 若过定点,请求出定点坐标,若不过定点,请说明理由.
已知函数.(1)若使,求实数的取值范围;(2)设,且在上单调递增,求实数的取值范围.
已知,,(1)若f(x)在处取得极值,试求c的值和f(x)的单调增区间;(2)如右图所示,若函数的图象在连续光滑,试猜想拉格朗日中值定理:即一定存在使得?(用含有a,b,f(a),f(b)的表达式直接回答)(3)利用(2)证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.
(本小题满分14分)已知10件产品中有3件是次品.(I)任意取出3件产品作检验,求其中至少有1件是次品的概率;(II)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
已知向量, , .(Ⅰ)求的值; (Ⅱ)若, , 且, 求.
(本小题满分12分)已知实数,函数.(Ⅰ)若函数有极大值32,求实数的值;(Ⅱ)若对,不等式恒成立,求实数的取值范围.