在直角坐标系 x O y 中,已知点 A 1 , 1 , B 2 , 3 , C 3 , 2 ,点 P x , y 在 ∆ A B C 三边围成的区域(含边界)上,且 O P ⇀ = m A B ⇀ + n A C ⇀ m , n ∈ R
(1)若 m = n = 2 3 ,求 O P ⇀ ; (2)用 x , y 表示 m - n ,并求 m - n 的最大值.
已知a>b>c且a+b+c=0,求证:.
已知x,yR+,且x+4y=1,则xy的最大值为.
如图,四面体ABCD中,O、E分别是BD、BC的中点, (I)求证:平面BCD; (II)求异面直线AB与CD所成角的余弦; (III)求点E到平面ACD的距离.
已知数列是首项为,公比的等比数列,, 设,数列. (1)求数列的通项公式;(2)求数列的前n项和Sn.
已知函数. (1)若使,求实数的取值范围; (2)设,且在上单调递增,求实数的取值范围.