已知抛物线与椭圆有公共焦点,且椭圆过点.(1)求椭圆方程;(2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙ 的切线,求直线的方程;(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
(本小题满分16分)已知数列是等差数列,数列是等比数列,且对任意的,都有.(1)若的首项为4,公比为2,求数列的前项和;(2)若.①求数列与的通项公式;②试探究:数列中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.
(本小题满分16分)如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.(1)求椭圆方程;(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.
(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于三点处,,到线段的距离,(参考数据: ). 今计划建一个生活垃圾中转站,为方便运输,准备建在线段(不含端点)上.(1)设,试将到三个小区距离的最远者表示为的函数,并求的最小值;(2)设,试将到三个小区的距离之和表示为的函数,并确定当取何值时,可使最小?
(本小题满分14分)如图,在四面体中,,是的中点.(1)求证:平面;(2)设为的重心,是线段上一点,且.求证:平面.
(本小题满分14分)已知角、、是的内角,分别是其对边长,向量,,.(1)求角的大小;(2)若,求的长.