已知抛物线与椭圆有公共焦点,且椭圆过点.(1)求椭圆方程;(2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙ 的切线,求直线的方程;(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
(本题13分) 已知平面直角坐标系内三点 (1) 求过三点的圆的方程,并指出圆心坐标与圆的半径. (2)求过点与条件 (1) 的圆相切的直线方程.
(本题12分) 设,,其中. (1) 若,求的值; (2)若,求的取值范围.
(本题12分) 已知平面,且是垂足, 证明:
(本题12分) 已知直线,.求和轴所围成的三角形面积.
已知函数,为的导数. (1)当时,求的单调区间和极值; (2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.