(10分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频率分布直方图(如上图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,. (Ⅰ)若点是的中点,求证:平面; (II)试问点在线段上什么位置时,二面角的余弦值为.
已知定点,,直线(为常数). (1)若点、到直线的距离相等,求实数的值; (2)对于上任意一点,恒为锐角,求实数的取值范围.
已知向量,设函数+1 (1)若, ,求的值; (2)在△ABC中,角A,B,C的对边分别是,且满足,求 的取值范围.
设集合为函数的定义域,集合为函数的值域,集合为不等式的解集. (1)求; (2)若,求的取值范围.
如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M. (1)若MD=6,MB=12,求AB的长; (2)若AM=AD,求∠DCB的大小.